skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mack, M_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With climate warming and drying, fire activity is increasing in Cajander larch (Larix cajanderiMayr.) forests underlain by continuous permafrost in northeastern Siberia, and initial post-fire tree demographic processes could unfold to determine long-term forest carbon (C) dynamics through impacts on tree density. Here, we evaluated above- and belowground C pools across 25 even-aged larch stands of varying tree densities that established following a wildfire in ~ 1940 near Cherskiy, Russia. Total C pools increased with increased larch tree density, from ~ 9,000 g C m−2in low-density stands to ~ 11,000 g C m−2in high and very high-density stands, with increases most pronounced at tree densities < 1 stem m−2and driven by increased above- and belowground (that is, coarse roots) and live and dead (that is, woody debris and snags) larch biomass. Total understory vegetation and non-larch coarse root C pools declined with increased tree density due to decreased shrub C pools, but these pools were relatively small compared to larch biomass. Fine root, soil organic matter (OM), and near surface (0–30 cm) mineral soil (MS) C pools varied little with tree density, although soil C pools held most (18–28% in OM and 44–51% in MS) C stored in these stands. Thus, if changing fire regimes promote denser stands, C storage will likely increase, but whether this increase offsets C lost during fires remains unknown. Our findings highlight how post-fire tree demographic processes impact C pool distribution and stability in larch forests of Siberian permafrost regions. 
    more » « less